Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Clin Pharmacol Ther ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501153

RESUMO

Autologous chimeric antigen receptor T-cell (CAR-T) therapies have garnered unprecedented clinical success with multiple regulatory approvals for the treatment of various hematological malignancies. However, there are still several clinical challenges that limit their broad utilization for aggressive disease conditions. To address some of these challenges, allogeneic cell therapies are evaluated as an alternative approach. As compared with autologous products, they offer several advantages, such as a more standardized "off the shelf" product, reduced manufacturing complexity, and no requirement of bridging therapy. As with autologous CAR-T therapies, allogeneic cell therapies also present clinical pharmacology challenges due to their in vivo living nature, unique pharmacokinetics or cellular kinetics (CKs), and complex dose-exposure-response relationships that are impacted by various patient- and product-related factors. On top of that, allogeneic cell therapies present additional unique challenges, including attenuated in vivo persistence and graft-vs.-host disease risk as compared with autologous counterparts. This review draws comparison between autologous and allogeneic cell therapies, summarizing key engineering aspects unique to allogeneic cell therapy. Clinical pharmacology learnings from emerging clinical data of allogeneic cell therapy programs are also highlighted, with particular emphasis on CK, dose-exposure-response relationship, lymphodepletion regimen, repeat dosing, and patient- and product-related factors that can impact CK and patient outcomes. There are specific unique challenges and opportunities arising from the development of allogeneic cell therapies, especially in optimizing lymphodepletion and establishing a regimen for repeat dosing. This review highlights how clinical pharmacologists are well positioned to help address these challenges by leveraging novel clinical pharmacology and modeling and simulation approaches.

2.
Antimicrob Agents Chemother ; 68(3): e0139423, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289076

RESUMO

Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.


Assuntos
Amicacina , Pneumonia , Humanos , Animais , Camundongos , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Pulmão , Pneumonia/tratamento farmacológico , Peso Corporal
3.
Clin Cancer Res ; 29(17): 3292-3300, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37339186

RESUMO

PURPOSE: To report the safety and efficacy of ipatasertib (AKT inhibitor) combined with rucaparib (PARP inhibitor) in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with second-generation androgen receptor inhibitors. PATIENTS AND METHODS: In this two-part phase Ib trial (NCT03840200), patients with advanced prostate, breast, or ovarian cancer received ipatasertib (300 or 400 mg daily) plus rucaparib (400 or 600 mg twice daily) to assess safety and identify a recommended phase II dose (RP2D). A part 1 dose-escalation phase was followed by a part 2 dose-expansion phase in which only patients with mCRPC received the RP2D. The primary efficacy endpoint was prostate-specific antigen (PSA) response (≥50% reduction) in patients with mCRPC. Patients were not selected on the basis of tumor mutational status. RESULTS: Fifty-one patients were enrolled (part 1 = 21; part 2 = 30). Ipatasertib 400 mg daily plus rucaparib 400 mg twice daily was the selected RP2D, received by 37 patients with mCRPC. Grade 3/4 adverse events occurred in 46% (17/37) of patients, with one grade 4 adverse event (anemia, deemed related to rucaparib) and no deaths. Adverse events leading to treatment modification occurred in 70% (26/37). The PSA response rate was 26% (9/35), and the objective response rate per Response Criteria in Solid Tumors (RECIST) 1.1 was 10% (2/21). Median radiographic progression-free survival per Prostate Cancer Working Group 3 criteria was 5.8 months [95% confidence interval (CI), 4.0-8.1], and median overall survival was 13.3 months (95% CI, 10.9-not evaluable). CONCLUSIONS: Ipatasertib plus rucaparib was manageable with dose modification but did not demonstrate synergistic or additive antitumor activity in previously treated patients with mCRPC.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Antígeno Prostático Específico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
4.
Antimicrob Agents Chemother ; 67(5): e0019723, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37022153

RESUMO

Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.


Assuntos
Antibacterianos , Polimixina B , Camundongos , Animais , Polimixina B/farmacocinética , Antibacterianos/farmacocinética , Pulmão/microbiologia , Disponibilidade Biológica , Plasma
5.
JCO Clin Cancer Inform ; 7: e2200168, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37116107

RESUMO

PURPOSE: Hyperglycemia is a major adverse event of phosphatidylinositol 3-kinase/AKT inhibitor class of cancer therapeutics. Machine learning (ML) methodologies can identify and highlight how explanatory variables affect hyperglycemia risk. METHODS: Using data from clinical trials of the AKT inhibitor ipatasertib (IPAT) in the metastatic castrate-resistant prostate cancer setting, we trained an XGBoost ML model to predict the incidence of grade ≥2 hyperglycemia (HGLY ≥ 2). Of the 1,364 patients included in our analysis, 19.4% (n = 265) of patients had HGLY ≥2 events with a median time of first onset of 28 days (range, 0-753 days), and 30.0% (n = 221) of patients on an IPAT regimen had at least one HGLY ≥2 event compared with 7.0% (n = 44) of patients on placebo. RESULTS: An 11-variable XGBoost model predicted HGLY ≥2 events well with an AUROC of 0.83 ± 0.02 (mean ± standard deviation). Using SHapley Additive exPlanations analysis, we found IPAT exposure and baseline HbA1c levels to be the strongest predictors of HGLY ≥2, with additional predictivity of baseline measurements of fasting glucose, magnesium, and high-density lipoproteins. CONCLUSION: The findings support using patients' prediabetic status as a key factor for hyperglycemia monitoring and/or trial exclusion criteria. Additionally, the model and relationships between explanatory variables and HGLY ≥2 described herein can help identify patients at high risk for hyperglycemia and develop rational risk mitigation strategies.


Assuntos
Hiperglicemia , Neoplasias da Próstata , Humanos , Masculino , Hiperglicemia/induzido quimicamente , Hiperglicemia/diagnóstico , Aprendizado de Máquina , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Fatores de Risco , Inibidores de Proteínas Quinases/uso terapêutico
6.
Pharmaceutics ; 14(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36297536

RESUMO

Ipatasertib is a selective, small molecule Akt inhibitor that is currently being developed for the treatment of metastatic castration-resistant prostate cancer. Darolutamide is an androgen receptor (AR) inhibitor that is approved for the treatment of non-metastatic castration-resistant prostate cancer. Ipatasertib is metabolized by CYP3A4 to form a less active metabolite M1 (G-037720). Ipatasertib is also a weak time-dependent CYP3A4 inhibitor. Darolutamide is a mild CYP3A4 inducer and is metabolized into an active keto-darolutamide metabolite via CYP3A4. In this Phase 1b open-label, single sequence crossover study, ipatasertib pharmacokinetics safety and tolerability were evaluated in combination with darolutamide in metastatic castration-resistant prostate cancer (n = 15 patients). Specifically, the effect of 600 mg BID of darolutamide on 400 mg QD ipatasertib was evaluated in this study. Based on pharmacokinetic analysis, a mild reduction in ipatasertib AUC0-24 h,ss and Cmax,ss exposures was observed (~8% and ~21%, respectively) when administered in combination with darolutamide, which is considered not clinically meaningful. M1 exposures were similar with and without darolutamide administration. Darolutamide and keto-darolutamide exposures in combination with ipatasertib were similar to previously reported exposures for single agent darolutamide. Overall, the combination appears to be well-tolerated in the metastatic castration-resistant prostate cancer indication with very few AEs.

7.
Cancer Chemother Pharmacol ; 90(6): 511-521, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36305957

RESUMO

PURPOSE: The exposure-response relationships for efficacy and safety of ipatasertib, a selective AKT kinase inhibitor, were characterized using data collected from 1101 patients with metastatic castration-resistant prostate cancer in the IPATential150 study (NCT03072238). METHODS: External validation of a previously developed population pharmacokinetic model was performed using the observed pharmacokinetic data from the IPATential150 study. Exposure metrics of ipatasertib for subjects who received ipatasertib 400 mg once-daily orally in this study were generated as model-predicted area under the concentration-time curve at steady state (AUCSS). The exposure-response relationship with radiographic progression-free survival (rPFS) was evaluated using Cox regression and relationships with safety endpoints were assessed using logistic regression. RESULTS: A statistically significant correlation between ipatasertib AUCSS and improved survival was found in patients with PTEN-loss tumors (hazard ratio [HR]: 0.92 per 1000 ng h/mL AUCSS, 95% confidence interval [CI] 0.87-0.98, p = 0.011). In contrast, an improvement in rPFS was seen in subjects receiving ipatasertib treatment (HR: 0.84, 95% CI 0.71-0.99, p = 0.038) but this effect was not associated with ipatasertib AUCSS in the intention-to-treat population. Incidences of some adverse events (AEs) had statistically significant association with ipatasertib AUCSS (serious AEs, AEs leading to discontinuation, and Grade ≥ 2 hyperglycemia), while others were associated with only ipatasertib treatment (AEs leading to dose reduction, Grade ≥ 3 diarrhea, and Grade ≥ 2 rash). CONCLUSIONS: The exposure-efficacy results indicated that patients receiving ipatasertib may continue benefiting from this treatment at the administered dose, despite some variability in exposures, while the exposure-safety results suggested increased risks of AEs with ipatasertib treatment and/or increased ipatasertib exposures.


Assuntos
Piperazinas , Neoplasias de Próstata Resistentes à Castração , Pirimidinas , Humanos , Masculino , Piperazinas/efeitos adversos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Pirimidinas/efeitos adversos
8.
Clin Transl Sci ; 15(12): 2989-2999, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197694

RESUMO

Ipatasertib, an AKT inhibitor, in combination with prednisone and abiraterone, is under evaluation for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Hyperglycemia is an on-target effect of ipatasertib. An open-label, single-arm, single-sequence, signal-seeking study (n = 25 mCRPC patients) was conducted to evaluate the glucose changes across four different treatment periods: ipatasertib alone, ipatasertib-prednisone combination, ipatasertib-prednisone-abiraterone combination (morning dose), and ipatasertib-prednisone-abiraterone combination (evening dose). Continuous glucose monitoring (CGM) was used in this study to compare the dynamic glucose changes across the different treatment periods. Four key parameters: average glucose, peak glucose and % time in range (70-180 and >180 mg/dl) were evaluated for this comparison. Ipatasertib-prednisone-abiraterone combination when administered in the morning after an overnight fast significantly increased average glucose, peak glucose and % time in range >180 mg/dl compared to ipatasertib monotherapy. Ipatasertib, when co-administered with abiraterone, increased ipatasertib and M1 (G-037720) metabolite exposures by approximately 1.5- and 2.2-fold, respectively. Exposure-response analysis results show that increased exposures of ipatasertib in combination with abiraterone are associated with increased glucose levels. When ipatasertib-prednisone-abiraterone combination was administered as an evening dose compared to a morning dose, lowered peak glucose and improved % time in range was observed. The results from this study suggest that dosing ipatasertib after an evening meal followed by overnight fasting can be an effective strategy for managing increased glucose levels.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Glicemia , Automonitorização da Glicemia , Glucose/uso terapêutico , Prednisona/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Resultado do Tratamento
9.
J Clin Pharmacol ; 62(2): 171-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34402068

RESUMO

Ipatasertib is a highly selective small-molecule pan-Akt inhibitor in clinical development. Ipatasertib is predominantly eliminated by the liver, and therefore, the effect of hepatic impairment on ipatasertib pharmacokinetics (PK) was evaluated. In this phase 1 open-label, parallel group study, the PK of ipatasertib were evaluated in subjects with hepatic impairment based on both the Child-Pugh and the National Cancer Institute Organ Dysfunction Working Group classification for hepatic impairment. A single dose of ipatasertib at 100 mg was administered and the PK was characterized in healthy subjects with normal hepatic function or mild, moderate, and severe hepatic impairment. Based on Child-Pugh classification, subjects with moderate and severe hepatic impairment had an ≈2- and 3-fold increase in systemic exposure (area under the plasma concentration-time curve from time 0 to infinity [AUC0-∞ ]) to ipatasertib, respectively, compared to subjects with normal hepatic function. Systemic exposure (AUC0-∞ ) to ipatasertib in subjects with mild hepatic impairment was comparable to that in subjects with normal hepatic function. In accordance with reduced clearance capacity, subjects with mild to severe hepatic impairment showed lower systemic exposure (AUC0-∞ ) of ipatasertib metabolite M1 (G-037720). Overall results were comparable between Child-Pugh and National Cancer Institute Organ Dysfunction Working Group classification criteria. Based on the results from this study, no dosage adjustment is required for ipatasertib when treating patients with mild hepatic impairment, whereas a dose reduction would be recommended for subjects with moderate or severe hepatic impairment. Based on real-world data analysis, ≈2% of the intended patient population is expected to need a modified dose due to moderate or severe hepatic impairment.


Assuntos
Antineoplásicos/farmacocinética , Falência Hepática/epidemiologia , Falência Hepática/metabolismo , Piperazinas/farmacocinética , Pirimidinas/farmacocinética , Adulto , Idoso , Área Sob a Curva , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Gravidade do Paciente
10.
Clin Pharmacol Ther ; 109(4): 1000-1020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33576025

RESUMO

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of ß-lactam antibiotics and ß-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While ß-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.


Assuntos
Técnicas Bacteriológicas/métodos , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla/fisiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Animais , Membrana Celular/fisiologia , Modelos Animais de Doenças , Humanos , Modelos Teóricos , Proteínas de Ligação às Penicilinas/fisiologia , beta-Lactamas/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-33106266

RESUMO

Mycobacterium abscessus causes serious infections that often require over 18 months of antibiotic combination therapy. There is no standard regimen for the treatment of M. abscessus infections, and the multitude of combinations that have been used clinically have had low success rates and high rates of toxicities. With ß-lactam antibiotics being safe, double ß-lactam and ß-lactam/ß-lactamase inhibitor combinations are of interest for improving the treatment of M. abscessus infections and minimizing toxicity. However, a mechanistic approach for building these combinations is lacking since little is known about which penicillin-binding protein (PBP) target receptors are inactivated by different ß-lactams in M. abscessus We determined the preferred PBP targets of 13 ß-lactams and 2 ß-lactamase inhibitors in two M. abscessus strains and identified PBP sequences by proteomics. The Bocillin FL binding assay was used to determine the ß-lactam concentrations that half-maximally inhibited Bocillin binding (50% inhibitory concentrations [IC50s]). Principal component analysis identified four clusters of PBP occupancy patterns. Carbapenems inactivated all PBPs at low concentrations (0.016 to 0.5 mg/liter) (cluster 1). Cephalosporins (cluster 2) inactivated PonA2, PonA1, and PbpA at low (0.031 to 1 mg/liter) (ceftriaxone and cefotaxime) or intermediate (0.35 to 16 mg/liter) (ceftazidime and cefoxitin) concentrations. Sulbactam, aztreonam, carumonam, mecillinam, and avibactam (cluster 3) inactivated the same PBPs as cephalosporins but required higher concentrations. Other penicillins (cluster 4) specifically targeted PbpA at 2 to 16 mg/liter. Carbapenems, ceftriaxone, and cefotaxime were the most promising ß-lactams since they inactivated most or all PBPs at clinically relevant concentrations. These first PBP occupancy patterns in M. abscessus provide a mechanistic foundation for selecting and optimizing safe and effective combination therapies with ß-lactams.


Assuntos
Mycobacterium abscessus , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Penicilinas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia
12.
Cell Death Dis ; 11(2): 138, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080178

RESUMO

Regulation of pancreas plasticity is critical for preventing injury and promoting regeneration upon tissue damage. The intricate process of pancreatic differentiation is governed by an orchestrated network of positive and negative transcription factors for appropriate gene expression. While the transcriptional repressor REST is well characterized as a silencer of neuronal genes in non-neuronal cells, the role of REST in regulating exocrine pancreas cell identity remains largely unexplored. Rest expression is increased upon injury in the mouse pancreas, such as induced acute and chronic pancreatitis and ductal adenocarcinoma. At the cellular level, Rest expression is lower in mature acinar cells compared with pancreas progenitor and ductal cells. To investigate the role of REST activity in pancreatic transdifferentiation and homeostasis, we developed a novel mouse model (Cre/RESTfl/fl) with conditional knockout (KO) of Rest expression within pancreas cells. The high Cre-mediated excision efficiency of Rest exon two KO caused decreased Rest expression and activity within the pancreas. Short-term organoid cultures of pancreatic acini to undergo acinar-to-ductal metaplasia (ADM) showed that loss of REST impedes induced ADM, while overexpression of REST increases ADM. Interestingly, REST ablation accelerated acute pancreatitis in mice treated with the cholecystokinin analog caerulein, as indicated by cellular morphology, elevated serum amylase levels and pancreatic edema. Furthermore, Cre/RESTfl/fl mice were more sensitive to acute pancreatitis injury and displayed augmented tissue damage and cellular lesions. These results suggest REST has a novel protective role against pancreatic tissue damage by acting as a regulator of exocrine cell identity.


Assuntos
Transdiferenciação Celular , Pâncreas Exócrino/metabolismo , Pancreatite/metabolismo , Proteínas Repressoras/deficiência , Animais , Células Cultivadas , Ceruletídeo , Modelos Animais de Doenças , Progressão da Doença , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas Exócrino/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Tempo
13.
mBio ; 11(1)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047131

RESUMO

Poor penetration through the outer membrane (OM) of Gram-negative bacteria is a major barrier of antibiotic development. While ß-lactam antibiotics are commonly used against Klebsiella pneumoniae and Enterobacter cloacae, there are limited data on OM permeability especially in K. pneumoniae Here, we developed a novel cassette assay, which can simultaneously quantify the OM permeability to five ß-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Both clinical isolates harbored a blaKPC-2 and several other ß-lactamases. The OM permeability of each antibiotic was studied separately ("discrete assay") and simultaneously ("cassette assay") by determining the degradation of extracellular ß-lactam concentrations via multiplex liquid chromatography-tandem mass spectrometry analyses. Our K. pneumoniae isolate was polymyxin resistant, whereas the E. cloacae was polymyxin susceptible. Imipenem penetrated the OM at least 7-fold faster than meropenem for both isolates. Imipenem penetrated E. cloacae at least 258-fold faster and K. pneumoniae 150-fold faster compared to aztreonam, cefepime, and ceftazidime. For our ß-lactams, OM permeability was substantially higher in the E. cloacae compared to the K. pneumoniae isolate (except for aztreonam). This correlated with a higher OmpC porin production in E. cloacae, as determined by proteomics. The cassette and discrete assays showed comparable results, suggesting limited or no competition during influx through OM porins. This cassette assay allowed us, for the first time, to efficiently quantify the OM permeability of multiple ß-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Characterizing the OM permeability presents a critical contribution to combating the antimicrobial resistance crisis and enables us to rationally optimize the use of ß-lactam antibiotics.IMPORTANCE Antimicrobial resistance is causing a global human health crisis and is affecting all antibiotic classes. While ß-lactams have been commonly used against susceptible isolates of Klebsiella pneumoniae and Enterobacter cloacae, carbapenem-resistant isolates are spreading worldwide and pose substantial clinical challenges. Rapid penetration of ß-lactams leads to high drug concentrations at their periplasmic target sites, allowing ß-lactams to more completely inactivate their target receptors. Despite this, there are limited tangible data on the permeability of ß-lactams through the outer membranes of many Gram-negative pathogens. This study presents a novel, cassette assay, which can simultaneously characterize the permeability of five ß-lactams in multidrug-resistant clinical isolates. We show that carbapenems, and especially imipenem, penetrate the outer membrane of K. pneumoniae and E. cloacae substantially faster than noncarbapenem ß-lactams. The ability to efficiently characterize the outer membrane permeability is critical to optimize the use of ß-lactams and combat carbapenem-resistant isolates.


Assuntos
Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacter cloacae/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamas/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Enterobacter cloacae/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana/métodos
14.
Sci Rep ; 9(1): 11147, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31367007

RESUMO

The pancreatic acinar-enriched miR-216a, miR-216b and miR-217 are encoded within the miR217HG. These miRNAs have been purported to play a tumor suppressive role as their expression is reduced in both human and mouse pancreatic ductal adenocarcinoma (PDAC). To examine this possibility, we generated individual, germline knockout (KO) mice of miR-216a, miR-216b or miR-217. Unlike our previous study showing germline deletion of the miR217HG was embryonic lethal, CRISPR-Cas9 deleted portions of the 5' seed region of the miRNAs produced live births. To investigate possible phenotypes during pancreatic acinar ductal metaplasia (ADM), pancreatic acini from wild type and KO mice were plated on collagen and allowed to transdifferentiate over 4 days. Acini from each of the three miRNA KO mice produced greater numbers of ducts compared to controls. Evaluation of the gene expression during in vitro ADM demonstrated an increase in Krt19 and a reduction in acinar genes (Carboxypeptidase A1, Amylase2a) on day 4 of the transdifferentiation. Recovery was delayed for the miR-216a and miR-216b KOs following caerulein-induced acute pancreatitis. Also predominate in the caerulein treated miR-216a and miR-216b KO mice was the presence of pancreatic duct glands (PDGs). To further establish a phenotype, miRNA KO mice were crossed with EL-KRASG12D (EK) mice and followed up to 13 months of age. While all mice developed severe dysplasia and cystic papillary neoplasms, there existed no apparent phenotypic difference in the miRNA KO/EK mice compared to EK mice. Our data does not support a tumor suppressor role for miR-216a, miR-216b or miR-217 in PDAC and emphasizes the need for phenotypic evaluation of miRNAs in complex in vivo models beyond that performed using cell culture.


Assuntos
Células Acinares/patologia , Carcinoma Ductal Pancreático/genética , Transformação Celular Neoplásica/genética , MicroRNAs/genética , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Animais , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Transdiferenciação Celular/genética , Transformação Celular Neoplásica/patologia , Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/patologia , Pancreatite/genética , Pancreatite/patologia , Transdução de Sinais/genética , Neoplasias Pancreáticas
15.
Pharmaceutics ; 11(7)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295857

RESUMO

Quinolone antibiotics present an attractive oral treatment option in patients with cystic fibrosis (CF). Prior studies have reported comparable clearances and volumes of distribution in patients with CF and healthy volunteers for primarily renally cleared quinolones. We aimed to provide the first pharmacokinetic comparison for pefloxacin as a predominantly nonrenally cleared quinolone and its two metabolites between both subject groups. Eight patients with CF (fat-free mass [FFM]: 36.3 ± 6.9 kg, average ± SD) and ten healthy volunteers (FFM: 51.7 ± 9.9 kg) received 400 mg pefloxacin as a 30 min intravenous infusion and orally in a randomized, two-way crossover study. All plasma and urine data were simultaneously modelled. Bioavailability was complete in both subject groups. Pefloxacin excretion into urine was approximately 74% higher in patients with CF compared to that in healthy volunteers, whereas the urinary excretion of metabolites was only slightly higher in patients with CF. After accounting for body size and composition via allometric scaling by FFM, pharmacokinetic parameter estimates in patients with CF divided by those in healthy volunteers were 0.912 for total clearance, 0.861 for nonrenal clearance, 1.53 for renal clearance, and 0.916 for volume of distribution. Nonrenal clearance accounted for approximately 90% of total pefloxacin clearance. Overall, bioavailability and disposition were comparable between both subject groups.

16.
Pharmaceutics ; 11(6)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216743

RESUMO

The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to differ considerably from that in healthy volunteers. For highly protein bound ß-lactams, profound pharmacokinetic differences were observed between comparatively morbid patients with CF and healthy volunteers. These differences could be explained by body weight and body composition for ß-lactams with low protein binding. This study aimed to develop a novel population modeling approach to describe the pharmacokinetic differences between both subject groups by estimating protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 ± 5.4kg) and six healthy volunteers (LBM: 53.1 ± 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution were 3% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling by LBM to account for body size and composition, the remaining pharmacokinetic differences were explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50% in male and estimated as 54.5% in female healthy volunteers as well as 56.3% in male and 74.4% in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics in special patient populations with altered protein binding.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30988147

RESUMO

There is a great need for efficacious therapies against Gram-negative bacteria. Double ß-lactam combination(s) (DBL) are relatively safe, and preclinical data are promising; however, their clinical role has not been well defined. We conducted a metaanalysis of the clinical and microbiological efficacy of DBL compared to ß-lactam plus aminoglycoside combinations (BLAG). PubMed, Embase, ISI Web of Knowledge, and Cochrane Controlled Trials Register database were searched through July 2018. We included randomized controlled clinical trials that compared DBL with BLAG combinations. Clinical response was used as the primary outcome and microbiological response in Gram-negative bacteria as the secondary outcome; sensitivity analyses were performed for Pseudomonas aeruginosa, Klebsiella spp., and Escherichia coli Heterogeneity and risk of bias were assessed. Safety results were classified by systems and organs. Thirteen studies evaluated 2,771 cases for clinical response and 665 cases for microbiological response in various Gram-negative species. DBL achieved slightly, but not significantly, better clinical response (risk ratio, 1.05; 95% confidence interval [CI], 0.99 to 1.11) and microbiological response in Gram-negatives (risk ratio, 1.11; 95% CI, 0.99 to 1.25) compared with BLAG. Sensitivity analyses by pathogen showed the same trend. No significant heterogeneity across studies was found. DBL was significantly safer than BLAG regarding renal toxicity (6.6% versus 8.8%, P = 0.0338) and ototoxicity (0.7 versus 3.1%, P = 0.0137). Other adverse events were largely comparable. Overall, empirically designed DBL showed comparable clinical and microbiological responses across different Gram-negative species, and were significantly safer than BLAG. Therefore, DBL should be rationally optimized via the latest translational approaches, leveraging mechanistic insights and newer ß-lactams for future evaluation in clinical trials.


Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , beta-Lactamas/uso terapêutico , Quimioterapia Combinada , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Tobramicina/uso terapêutico , Resultado do Tratamento
18.
Eur J Pharm Sci ; 123: 416-428, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076955

RESUMO

Understanding the pharmacokinetics in patients with cystic fibrosis (CF) is important for dosing. For antibiotics with extensive metabolism, however, a comparison of metabolite formation and elimination between patients with CF and healthy volunteers has never been performed via population modeling. We aimed to compare the population pharmacokinetics of fleroxacin and its N­oxide and demethyl metabolites between patients with CF and healthy volunteers. Our analysis included eleven adult patients with CF and twelve healthy volunteers who received 800 mg fleroxacin as a single oral dose followed by five doses every 24 h from a previously published study. All plasma concentrations and amounts in urine for fleroxacin and its metabolites were simultaneously modelled. The estimates below accounted for differences in body size and body composition via allometric scaling by lean body mass. Oral absorption was slower in patients with CF than in healthy volunteers. For fleroxacin, the population mean in patients with CF divided by that in healthy volunteers was 1.12 for renal clearance, 1.01 for linear nonrenal clearance, 0.83 for saturable exsorption clearance into intestine, and 0.81 for volume of distribution. The formation clearances of N­oxide fleroxacin and N­demethylfleroxacin were 0.520 L/h and 0.496 L/h in patients with CF; these formation clearances were 0.378 L/h and 0.353 L/h in healthy volunteers. Renal clearance in patients with CF divided by that in healthy volunteers was 1.53 for N­oxide fleroxacin and 1.70 for N­demethyl fleroxacin. Allometric scaling by lean body mass best explained the variability. While fleroxacin pharmacokinetics was comparable, both formation and elimination clearances of its two metabolites were substantially larger in patients with CF compared to those in healthy volunteers.


Assuntos
Anti-Infecciosos/farmacocinética , Fibrose Cística/tratamento farmacológico , Fleroxacino/farmacocinética , Administração Oral , Adolescente , Adulto , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/metabolismo , Biotransformação , Composição Corporal , Tamanho Corporal , Estudos de Casos e Controles , Óxidos N-Cíclicos/farmacocinética , Fibrose Cística/diagnóstico , Fibrose Cística/metabolismo , Bases de Dados Factuais , Desmetilação , Feminino , Fleroxacino/administração & dosagem , Fleroxacino/análogos & derivados , Fleroxacino/metabolismo , Absorção Gastrointestinal , Meia-Vida , Voluntários Saudáveis , Humanos , Eliminação Intestinal , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Eliminação Renal , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-29712652

RESUMO

Penicillin-binding proteins (PBPs) are the high-affinity target sites of all ß-lactam antibiotics in bacteria. It is well known that each ß-lactam covalently binds to and thereby inactivates different PBPs with various affinities. Despite ß-lactams serving as the cornerstone of our therapeutic armamentarium against Klebsiella pneumoniae, PBP binding data are missing for this pathogen. We aimed to generate the first PBP binding data on 13 chemically diverse and clinically relevant ß-lactams and ß-lactamase inhibitors in K. pneumoniae PBP binding was determined using isolated membrane fractions from K. pneumoniae strains ATCC 43816 and ATCC 13883. Binding reactions were conducted using ß-lactam concentrations from 0.0075 to 256 mg/liter (or 128 mg/liter). After ß-lactam exposure, unbound PBPs were labeled by Bocillin FL. Binding affinities (50% inhibitory concentrations [IC50]) were reported as the ß-lactam concentrations that half-maximally inhibited Bocillin FL binding. PBP occupancy patterns by ß-lactams were consistent across both strains. Carbapenems bound to all PBPs, with PBP2 and PBP4 as the highest-affinity targets (IC50, <0.0075 mg/liter). Preferential PBP2 binding was observed by mecillinam (amdinocillin; IC50, <0.0075 mg/liter) and avibactam (IC50, 2 mg/liter). Aztreonam showed high affinity for PBP3 (IC50, 0.06 to 0.12 mg/liter). Ceftazidime bound PBP3 at low concentrations (IC50, 0.06 to 0.25 mg/liter) and PBP1a/b at higher concentrations (4 mg/liter), whereas cefepime bound PBPs 1 to 4 at more even concentrations (IC50, 0.015 to 2 mg/liter). These PBP binding data on a comprehensive set of 13 clinically relevant ß-lactams and ß-lactamase inhibitors in K. pneumoniae enable, for the first time, the rational design and optimization of double ß-lactam and ß-lactam-ß-lactamase inhibitor combinations.


Assuntos
Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Andinocilina/metabolismo , Andinocilina/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/metabolismo , Carbapenêmicos/farmacologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Análise de Componente Principal , beta-Lactamas/metabolismo
20.
J Extracell Vesicles ; 6(1): 1324730, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717420

RESUMO

Extracellular vesicles (EVs) are under evaluation as therapeutics or as vehicles for drug delivery. Preclinical studies of EVs often use mice or other animal models to assess efficacy and disposition. However, as most EVs under evaluation are derived from human cells, they may elicit immune responses which may contribute to toxicities or enhanced EV clearance. Furthermore, EVs from different cell sources or EVs comprising various cargo may differ with respect to immunogenicity or toxicity. To assess EV-induced immune response and toxicity, we dosed C57BL/6 mice with EVs intravenously and intraperitoneally for 3 weeks. EVs were harvested from wild type or engineered HEK293T cells which were modified to produce EVs loaded with miR-199a-3p and chimeric proteins. Blood was collected to assess hematology, blood chemistry, and immune markers. Spleen cells were immunophenotyped, and tissues were harvested for gross necropsy and histopathological examination. No signs of toxicity were observed, and minimal evidence of changes in immune markers were noted in mice dosed with engineered, but not with wild type EVs. This study provides a framework for assessment of immunogenicity and toxicity that will be required as EVs from varying cell sources are tested within numerous animal models and eventually in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...